Topical oxygen therapy stimulates healing in difficult, chronic wounds: a tertiary centre experience

*Corresponding author email: djpdpm.afas@gmail.com

1 Northern District Trauma & Wound Clinics Division, “Maccabi” Health Care Services.
2 Hillel Yaffe Medical Center.
3 Department of Orthopaedic Surgery, Assaf HaRofeh Medical Center, Zerrifin, Affiliated to the Sackler School of Medicine, Tel Aviv University, Israel.
4 Maccabi healthcare services Beer Sheva, Israel, and Orthopaedic department Soroka Medical Center Beer Sheva, Israel.
5 Department of Chronic Wounds, Maccabi health care services, Rishon Lezion, Israel, and Wolfson Medical Center, Foot and Ankle unit, Holon, Israel.
6 Department of Vascular Surgery, Addenbrooke’s Hospital, Cambridge, UK.
Topical oxygen therapy stimulates healing in difficult, chronic wounds: a tertiary centre experience

Objective: Oxygen plays a central role in wound healing. Recent technological advances have miniaturised oxygen delivery systems, with novel topical oxygen therapy allowing patients to receive oxygen therapy 24 hours a day while remaining completely mobile. Here we aim to examine the efficacy and safety of continuous topical oxygen diffusion in a ‘real-world’ setting.

Methods: Topical oxygen therapy (TOT) was evaluated in patients with chronic, non-healing wounds in a tertiary referral specialist clinic.

Results: The mean wound duration before TOT was 15 months. Regardless of treatment duration, in this previously non-healing group complete wound closure was observed in 32% of the total patients treated with the TOT device. However, optimal wound healing occurred when the device was used for >25 days, with an 83% wound area reduction and 47% wound closure rate seen in venous leg ulcers (VLUs) and a 74% reduction and a 57% wound closure rate in arterial foot ulcers.

Conclusion: Use of TOT in chronic wounds stimulates a healing state. In our study, almost half of the previously non-healing wounds closed.

Declaration of interest: Paul Hayes acts as Medical Director for Inotec AMD and has a share-holding in the company.

© 2018 MA Healthcare Ltd

THIS ARTICLE IS REPRINTED FROM THE JOURNAL OF WOUND CARE VOL 27, NO 7, JULY 2018

Hanna Kaufman,1 MD, Head of Department; Maxim Gurevich,2 MD; Eran Tamir,3 MD, Orthopaedic Surgeon; Elad Keren,4 MD, Orthopaedic Surgeon; Lipkin Alexander,5 MD, Senior Orthopaedic Surgeon; Paul Hayes,6 MD, Vascular Surgeon

*Corresponding author email: djpdpm.afas@gmail.com

1 Northern District Trauma & Wound Clinics Division, “Maccabi” Health Care Services. 2 Hillel Yaffe Medical Center. 3 Department of Orthopaedic Surgery, Assaf Harofeh Medical Center, Zerifin, Affiliated to the Sackler School of Medicine, Tel Aviv University, Israel. 4 Maccabi healthcare services Beer Sheva. Israel, and Orthopaedic department Soroka Medical Center Beer Sheva, Israel. 5 Department of Chronic Wounds, Maccabi health care services, Rishon Lezion, Israel, and Wolfson Medical Center, Foot and Ankle unit, Holon, Israel. 6 Department of Vascular Surgery, Addenbrooke’s Hospital, Cambridge, UK.
Fig 1. Most wounds exhibit a degree of hypoxia, low oxygen levels lead to reduced rates of wound healing

Possible causes of low oxygen levels

- Diabetes
- Atherosclerosis
- Venous Disease
- Biofilm and Neutrophil activity

Low wound oxygen can lead to:

1. Failure to fight infection leading to wound deterioration
 - Neutrophils and macrophages are key for clearing infection from wounds. During this process their oxygen demands increase 50-fold. The oxygen is used to generate potent antibacterial superoxide molecules.

2. Poor quality tissue with high wound recurrence rates
 - Oxygen is key to the assembly of a strong collagen matrix. When wound oxygen levels are low, the collagen formed is only one-third of its usual strength. The oxygen is used to bind the strands of collagen together.

3. Inability to produce new skin cells that spread and cover the wound
 - Epithelial migration is very energy dependent as a large number of processes need to occur. Energy production in the presence of adequate oxygen is 18-times more efficient than in a hypoxic wound.

- Plasma membrane
- Phagocyte
- Lysosome
- Phagosome (phagocytic vesicle)
- Lysosomes
- Secretion of procollagen in transport vesicles

© 2018 MA Healthcare ltd
exposure to supra-atmospheric air pressures and supraphysiologic oxygen levels. Acceleration in healing with local HBOT has been demonstrated, although again level 1 or 2 evidence is lacking to support its routine use. A common difficulty with both treatments is that the administration of oxygen is intermittent due to the restrictive nature of the chamber or device by which it is provided. Given the potentially long period required to heal chronic wounds, reliable patient adherence throughout this period is often difficult. In contrast, the local TOT evaluated in this study increases wound oxygen levels above physiological normal levels for the vast majority of the day, while allowing the patient to undertake most of their normal activities.

The concept of delivering oxygen topically to the wound surface is not new. In the past, clinicians have used oxygen direct from wall supplies or tanks, but this has obvious practical constraints. Modern delivery of gaseous oxygen can be administered by a device consisting of a small battery-powered electrochemical oxygen generator that electrolyses atmospheric water vapour to produces pure humidified oxygen. The oxygen is transported down a fine bore tube and delivered directly onto the surface of the wound, creating a high concentration of oxygen under the dressing and allowing for oxygen to be diffused down the concentration gradient into the wound. The compact nature of the device allows the patient to be completely ambulatory and therefore undergo continuous 24/7 treatment while the device is in situ (Fig 2). From a practical standpoint, this method’s simplicity of use creates the potential for it to be a widely available treatment adjunct in hospital and community settings, if evidence supports its efficacy in healing chronic wounds and reducing associated morbidity and mortality. The effectiveness of topical oxygen in chronic wounds remains largely unverified due to the relatively recent development of the therapy, but has been reviewed in a larger study of generalised oxygen therapy.

Recent papers have evaluated use of this particular device in chronic diabetic foot ulcers (DFUs) in a controlled trial setting.

Aims
This study aims to examine the efficacy and safety of topical continuous diffusion of oxygen in a ‘real-world’, tertiary mixed wound care centre.

Methods
The study represents a consecutive case series of patients treated with the TOT delivery system (Natrox, Inotec AMD). All patients going into the study had been managed with standard of care and best local practice previously and had failed to heal. Access to the device was not limited by any criteria such as chronicity of wound, wound size or level of ankle-brachial pressure index (ABPI) and as such this represents a real-world, uncontrolled cohort of patients. The wounds were imaged using a digital camera and an analogue scale to allow assessment of size. The patient data was collected in a prospective manner on a structured database. The study was conducted as an audit of a CE-marked and 510K approved product and as such did not require institutional review board (IRB) approval. Written permission for the use of patient data and photos was obtained for all patients. Only adult patients with mental capacity were included. The first patient was treated in November 2014 and the final patient finished their treatment in November 2017.

The ambulatory TOT delivery device used in this study delivers continuous oxygen to the wound bed through an oxygen distribution system, or diffuser that sits directly on the wound surface and is connected to the generator by a fine bore tube. The generator employs a small battery-powered electrochemical ‘oxygen generator’ that produces oxygen from water molecules in the atmosphere at a concentration of around 98% and a rate of approximately 13ml per hour (as per the Natrox manufacturer’s instructions for use). The oxygen concentration ultimately generated under the dressing will vary depending on wound area, permeability of the dressing and rate of leakage of oxygen from around the dressing edges. The oxygen distribution system is held in place overlying the wound bed by a conventional dressing and the oxygen generator is worn by the patient in a holster on the waist or above the calf, or can be placed in a trouser pocket.

There were limited inclusion and exclusion criteria for the use of the device. Patients with evidence of acute, invasive infection were excluded, but chronic osteomyelitis being treated with oral antibiotics was allowable. Patients needed to be able to change and charge the battery in the device themselves. The device was used in conjunction with standard good wound care practices, including debridement to healthy wound edges and the removal of excess necrotic material in the wound bed. In each patient, the disposable oxygen delivery system dressing was placed...
directly on to the wound bed and the wound was then
dressed with what was felt to be standard of care for
each particular wound. Secondary overlying dressings
were chosen from each hospital’s wound care formulary.
The TOT was not used when there were ointments or
creams applied to the wound surface that would act as
a barrier to oxygen delivery. Use of the oxygen delivery
system under compression bandaging was allowed and
care was taken to place padding under the oxygen
delivery tubing. Changes of dressing types were
allowable through the study period according to the
nature of each individual’s wound at any time.

Statistical analysis
Data was tested for normality of distribution. For
normally distributed data, repeated measures were
assessed with independent t-tests. Data with a skewed
variation were examined with a Mann Whitney U-test.
Discrete variables were analysed using Fisher’s exact
test. Statistical analysis was performed with SPSS
with p<0.05 was deemed significant.

Results
Between November 2014 and April 2017, 100 patients
were treated with TOT in the clinic. The patients had
chronic wounds with a mean duration of 15.2 months
before the initiation of TOT (range: 1–192 months).
The mean patient age was 66.9 years of age and 62% of
patients were male. There were 18% of the total cohort
reported themselves as active smokers at the time of
treatment, this did not influence healing rates.

There were a number of pathologies represented:
48 venous leg ulcers (VLU); 27 arterial ulcers; 13 diabetic
foot ulcers (DFUs); four post-trauma; three pressure
ulcers (PUs); two burns and three postoperative wounds.
In order to undertake meaningful analysis of the data,
the 27 arterial ulcers and 13 DFUs were grouped
together based on their similar anatomical and
pathological characteristics and in the remainder of the
document these will be referred to as the foot group. In
addition, all the wounds types with four or less data
points were grouped into a miscellaneous category.

The device was very well tolerated by the patients;
complete adherence with TOT during the study was
achieved in 88% of patients. The mean duration of
treatment was 40.3 days. Across the whole cohort, the
median weekly wound reduction was 7.0%/week. In
this chronic wound cohort complete wound closure
with TOT was achieved in 32.2% of patients.

Study results demonstrate that TOT durations
>25 days was optimal for wound healing. During initial
inspection of data, it was apparent that a subset of

Table 1. Data comparing those with fully healed wounds against those without complete closure in the group treated for
≥25 days and were adherent with treatment

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Age</th>
<th>Male</th>
<th>Active smokers</th>
<th>Wound duration</th>
<th>Start area</th>
<th>Treatment time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wounds not fully closed</td>
<td>34</td>
<td>68.1</td>
<td>70.6%</td>
<td>26.5%</td>
<td>17.4 months</td>
<td>13.20 cm²</td>
<td>57.4 days</td>
</tr>
<tr>
<td>Completely healed wounds</td>
<td>31</td>
<td>65.8</td>
<td>61.3%</td>
<td>25.8%</td>
<td>14.1 months</td>
<td>5.36 cm²</td>
<td>46.8 days</td>
</tr>
<tr>
<td>p-value</td>
<td>0.574</td>
<td>0.437</td>
<td>0.952</td>
<td>0.505</td>
<td>0.157</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
patients (n=30) had been treated for a shorter period of time, <25 days, a treatment decision resulting from limited experience with the therapy. In order to address this discrepancy, the data were split into those patients treated for a minimum of 25 days (mean duration: 52 days) and compared with those treated for shorter time periods (Table 1). In total, 70 patients were treated with the TOT for >25 days and in this group the complete healing rate was 46%, as opposed to 0% in those receiving a shorter treatment regime. The longer duration treatment group reduced their wound size by 76%, from a mean of 5.2cm² to 1.75cm², compared with only a 39% wound area reduction in the shorter timeframe, from a mean of 6.4cm² to 4.3cm² (Fig 3).

Further analysis of the data will concentrate on those cases treated for >25 days with TOT. There were four patients felt by the team to be inadequately adherent, as they were using the device less than 50% of the time; these patients were also excluded.

The wound closure rate for the chronic VLUs with >25 days treatment was 47% and for the foot group this was higher, at 57% (Fig 4). The wound area reduction was greatest in the VLUs (p<0.001), 83% over the course of the study, with an average closure rate of 9.5% per week. Foot ulcers (for the arterial and diabetic groups combined) had an overall wound reduction of 74% (p<0.01) Fig 5.

An analysis was undertaken to compare those patients with complete healing, relative to those whose wounds failed to close completely, trying to identify factors that may predict a positive response to TOT. The main difference between the healed and non-healed wounds was the initial size of the wound, with non-healing wounds having a higher initial area. The healed wounds were still ‘hard-to-heal wounds’ as they had been present for over 14 months before the TOT. The results are summarised in Table 1.

Discussion

The data presented here demonstrate that the technology underpinning TOT works in a ‘real world’ setting, when used on a variety of patients in our specialist wound care centre. Many of the patients had been treated with a large variety of therapies previously and failed to heal. The patients included in our study were a hard-to-heal group, with average ulcer duration of over 15 months. The use of TOT on chronic wounds that had previously failed to heal led to complete closure in 57% of chronic foot wounds and in 47% of VLUs, wound closures achieved after 52 days on average of TOT. In contrast, the UK national average chronic wounds closure rate is 43% after a full year of treatment, 18 7-fold longer closure rates than observed in this study.

Hypoxia in chronic wounds

There are number of reasons why TOT can aide wound closure in foot wounds. Wound hypoxia is well recognised to occur in diabetes and peripheral arterial disease (PAD) primarily due to macrovascular and microvascular disease, and local oedema. Even in patients with diabetes and foot pulses, there can be a failure of oxygen delivery to the capillary bed, and therefore the tissues, due to arterio-venous shunting. Tissue oxygenation in the central area of a wound in a patient with diabetes can be as low as 0 to 10mmHg, 8 well below that required to heal wounds, especially given the higher metabolic demands of wounds in diabetic patients.9

The 47% wound closure rate observed in VLUs treated with TOT may be surprising to some, as the relative levels of hypoxia which occur in VLU patients are poorly recognised. However, tissue oxygen levels are reduced via a number of mechanisms in venous disease such as lower limb oedema; with a relatively fixed amount of oxygen being delivered to the lower limb, the increased limb volume caused by the oedema effectively dilutes the oxygen concentration available to the cells.19 Lipodermatosclerosis causes the deposition of dense scar-like tissue around the microvessels, which both compresses them and restricts the rate at which oxygen will diffuse down its concentration gradient from the capillaries into the tissues.20 The ultimate expression of lipodermatosclerosis is atrophie blanche, where the skin is essentially infarcted through lack of oxygen. Finally, venous reflux leads to venous hypertension, and the impaired outflow flow through the capillary bed which limits the rate at which new oxygen-laden haemoglobin molecules arrive and can deliver their oxygen to the neighbouring tissues.21 Given all of these factors, along...
with the fact that standard of care covers the VLUs in multiple layers of bandages, thus excluding atmospheric oxygen, it is likely that topical oxygen to VLUs should improve healing.

Topical oxygen therapy: mechanisms of action

Oxygen is known to stimulate activity of neutrophils and macrophages, phagocytes which are essentially the cell’s cleaning crew. Neutrophils and macrophages clear wound colonising bacteria and associated materials through the generation of powerful reactive oxygen species. The production of reactive oxygen species (ROS) requires large amounts of both energy and oxygen, leading to a significant increase in local cellular oxygen consumption. Therefore, without adequate amounts of oxygen present, clearance of the bacteria will not be effective. Furthermore, there is evidence that increasing the levels of oxygen around neutrophils and macrophages above the physiological 21% level will increase their activity into supra-physiological levels, suggesting an antibacterial benefit of oxygen therapy even for patients with normal blood supply, whose tissue oxygen levels we assume to be optimal.

Topical oxygen stimulated bacterial clearance may also benefit collagen production. Chronic bacterial presence inhibits the production of good quality collagen and increases its rate of breakdown through inflammation and the subsequent rise in matrix-metalloprotease activity. Additionally, collagen production is itself dependent on adequate concentrations of oxygen for a number of stages of its assembly, such as oxygen-dependent cross linking to form stable bonds between collagen strands, strengthening this essential structural protein. Hypoxic conditions in chronic wounds results in collagen produced at approximately 1/3 of the strength of collagen produced in normal levels of oxygen. In addition, raising the oxygen level above its normal 21% can accelerate collagen production, suggesting that even patients with relatively normal oxygen tensions would benefit from TOT.

The final major area where oxygen has an impact on wound healing is epithelial migration. Only once the wound has been thoroughly debrided and there is a solid foundation of collagen will the epithelial cells migrate across the surface to close the wound. Epithelial cells will not cross an infected wound bed. The rate of epithelial migration is related to the oxygen tension at the wound surface, and again raising the levels of oxygen to supra-physiological levels, as can be achieved with TOT, will accelerate wound closure above normal levels. As topical oxygen is being applied directly to this cell layer, high concentrations of oxygen are achieved thus stimulating migration. Therefore, topical oxygen benefits numerous cellular mechanisms required for wound healing (e.g. antibacterial mechanisms, collagen production and epithelial migration). Chronic wounds must progress through all of these stages before wound closure is obtained (Fig 6). Short term use of oxygen can help with a single stage, but in order to move these difficult wounds towards healing, longer term application is required.

Conclusions

In this study, best results were seen with >25 days of TOT, with complete closure in 57% of foot wounds and in 47% of VLUs that had previously been deemed hard-to-heal. Chronic wounds are a complex environment, often with dysfunction in many of the diverse systems needed to function optimally in order to heal. The unique power of topical oxygen, its ability act on many different facets of wound healing, making it more likely to close a chronic wound than therapies directed against only one or two pathophysiological processes.

Fig 6. The role of oxygen in wound healing
References:
2. Fejarová V, Jirkovská A, Dragomírekč E et al. Does the diabetic foot have a significant impact on selected psychological or social characteristics of patients with diabetes mellitus? J Diabetes Res 2014; 2014:371938 https://doi.org/10.1155/2014/371938

Reflective questions
● When you consider your patients with hard-to-heal wounds, do you regularly think about the supply of oxygen to the tissues?
● What are the number of different factors influencing wound healing that are improved when oxygen levels are restored to normal?
● Are there patients under your care who might benefit from a trial of topical oxygen therapy and if so, what are the benefits to them?